

NEP - Semester End Examination – October 2025

Program: SY.B.Sc.IT SEM-III Course: Operating System

Program Code: UGIT01 Course Code: NUIT303

Duration: 1 Hour

Max. Marks: 30

Instructions:

1. All questions are compulsory.
2. Figures to the right indicate full marks.
3. Draw neat diagrams wherever necessary.

Q. 1	Attempt any THREE of the following. (5 Marks each)	[15]	Course Outcome	Knowledge Level																		
	(a) Define a thread. What are the different types of threads?		CO2	L1																		
	(b) Explain how semaphores are used to implement mutual exclusion and synchronization.		CO2	L2																		
	(c) Critically assess the role of security/privacy management in OS design.		CO6	L5																		
	(d) Using the provided process table (P1-P5 with arrival and burst times), compute completion times, turnaround times, waiting times, response times, and averages using First-Come-First-Served (FCFS) scheduling algorithm.		CO2	L3																		
	<table border="1" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th>Process</th><th>Arrival Time</th><th>Burst Time</th></tr> </thead> <tbody> <tr> <td>P1</td><td>0</td><td>5</td></tr> <tr> <td>P2</td><td>2</td><td>3</td></tr> <tr> <td>P3</td><td>1</td><td>8</td></tr> <tr> <td>P4</td><td>4</td><td>6</td></tr> <tr> <td>P5</td><td>3</td><td>2</td></tr> </tbody> </table>	Process	Arrival Time	Burst Time	P1	0	5	P2	2	3	P3	1	8	P4	4	6	P5	3	2			
Process	Arrival Time	Burst Time																				
P1	0	5																				
P2	2	3																				
P3	1	8																				
P4	4	6																				
P5	3	2																				
	(f) Suggest improvements to traditional batch processing systems using modern OS techniques.		CO2	L6																		
	(g) Debate whether Linux or Windows provides a better OS environment for developers.		CO1	L5																		
Q. 2	Attempt any THREE of the following. (5 Marks each)	[15]	Course Outcome	Knowledge Level																		
	(a) Explain the conditions that lead to thrashing and its effect on system performance.		CO4	L2																		

	(b)	Design a memory hierarchy diagram for a modern computer system.	CO1	L5
	(c)	Evaluate the effectiveness of First in First Out page replacement algorithm using the following page reference string: 2, 3, 2, 1, 5, 2, 4, 5, 3, 2, 5, 2, assuming 3 page frames. Justify which algorithm performs better based on the number of page faults.	CO3	L5
	(d)	Show a real-life analogy of two-level directory structure.	CO3	L3
	(e)	List and explain allocation methods (Linked list allocation & indexed allocation)	CO1	L1
	(g)	Analyze how file attributes impact various file operations in an operating system. Provide examples to illustrate the relationship between them.	CO5	L4

-- X -- X --