

NEP - Semester End Examination – October 2025

Program:	SY.B.Sc.IT SEM-III	Course:	Data Structure for Problem Solving
Program Code:	UGIT01	Course Code:	NUIT302

Duration: 1 Hour **Max. Marks:** 30

Instructions:

1. All questions are compulsory.
2. Figures to the right indicate full marks.
3. Draw neat diagrams wherever necessary.

Q. 1	Attempt any THREE of the following. (5 Marks each)	[15]	Course Outcome	Knowledge Level
(a)	Define a stack. List its main operations and explain each operation with one example.		CO1	L1
(b)	Explain the difference between best-case, worst-case, and average-case time complexity.		CO2	L2
(c)	Write the algorithm to insert an element into an array at a given position. Demonstrate with an example input.		CO1, CO3	L3
(d)	Compare arrays and linked lists. Analyze which operations (insertion, deletion, traversal) are more efficient in each case and justify your answer.		CO2	L4
(f)	Evaluate the behavior of a linear queue of size 3 for the following sequence of operations: Enqueue 5, Enqueue 15, Display, Dequeue, Enqueue 25, Display, Dequeue, Dequeue, Display, Dequeue. Criticize any overflow or underflow conditions that occur. Also design and implement a simple algorithm or C/C++ program to demonstrate the Enqueue(x) operation.		CO3	L5
(g)	Design and construct a singly linked list that allows insertion at the end of the list. Formulate a small example to demonstrate the working of the operation. You may either provide a C/C++ program or a step-by-step algorithm.		CO3	L6
Q. 2	Attempt any THREE of the following. (5 Marks each)	[15]	Course Outcome	Knowledge Level
(a)	Write a C/C++ program or algorithm to perform Insertion Sort on an array of integers. Apply Insertion Sort algorithm to sort the array 64, 34, 25, 12 and show the array after each pass.		CO3	L3
(b)	What is hashing in data structures? Explain collision in a hash table and describe in simple terms how separate chaining resolves it.		CO1	L2

	(c)	Implement and demonstrate one searching technique using an algorithm or C/C++ code. Use an example array to show how the search works.	CO3	L3
	(d)	Design and implement a Binary Search Tree (BST) in C/C++ for the sequence 50, 30, 20, 80, 60, 40, 70. Generate and present its Inorder, Preorder, and Postorder traversals.	CO4	L6
	(e)	Design and construct a Huffman coding scheme for the given character frequencies A(5), B(9), C(12), D(13), and E(16). Formulate the Huffman codes for each character and develop the total number of compressed bits required.	CO2	L6
	(g)	Evaluate the use of the modulo division method for inserting the values 99, 33, 23, 44, 56, 43, and 19 into a hash table of size 7. Discuss the problems caused by collisions and explain how linear probing helps resolve them. Present the final arrangement of the hash table.	CO2	L5

-- X -- X --