

Program/Sem:	T.Y.B.Sc CS – Sem - V	Course:	Information and Network Security
Program Code:	IS00195	Course Code:	USCS502

Duration: 2 ½ Hour

04 NOV 2025

Max. Marks: 75

Instructions:

1. All questions are compulsory.
2. Figures to the right indicate full marks.
3. Draw neat diagrams wherever necessary.

Q. 1 Attempt ANY FOUR from the following:

1201

- a) Describe the main components of a simple symmetric cipher model. Explain with a suitable diagram.
- b) Differentiate between substitution and transposition techniques in cryptography.
- c) Using a simple columnar transposition cipher, encrypt the given plaintext message.
Plaintext: CYBERSECURITY , Key: GERMAN
- d) Explain any two types of active attacks with suitable illustrations.
- e) Explain in detail the Feistel network structure used for both encryption and decryption operations.
- f) What are the various types of security mechanisms employed to protect information systems?

Q. 2 Attempt ANY FOUR from the following:

[20]

- a) Describe the structure and components of an X.509 digital certificate.
- b) Discuss in detail the Kerberos authentication process, including its message exchanges and ticketing mechanism.
- c) Explain the working of the HMAC (Hash-based Message Authentication Code) algorithm.
- d) Write a note on the public key cryptosystem and its significance.
- e) Define a digital signature and explain its purpose in data integrity and authentication.
- f) John and Sara want to communicate securely using the Diffie-Hellman Key Exchange method. Given the following parameters:
Prime number $p=11$, Generator $g=2$, John's private key = 4, Sara's private key = 3
Calculate John's public key, Sara's public key. Using the public keys, compute the shared secret key.

Q. 3 Attempt ANY FOUR from the following:

[20]

- a) Define S/MIME (Secure/Multipurpose Internet Mail Extensions) and highlight its key features.
- b) Write a brief note on S/MIME and its role in secure email communication.
- c) Explain the concept and functioning of Secure Electronic Transaction (SET) protocol.
- d) Explain the architecture of IP security (IPSec).
- e) Describe the structure of Pretty Good Privacy (PGP) encryption.
- f) List and describe any five types of computer viruses.

Q. 4 Attempt ANY FIVE from the following:

[15]

- a) Explain the working principle of the Cipher Feedback (CFB) encryption mode.
- b) Define a Message Authentication Code (MAC) and its purpose.
- c) List and describe any three important features of cryptographic hash functions.
- d) Define the rail fence cipher and its basic operation.
- e) Describe the life cycle of a computer virus, highlighting its main stages.
- f) Using Caesar cipher with key size = 4, encrypt the message:
"secure the network immediately"

-- X -- X --