

NEP - Semester End Examination – October 2025

Program:	SYBSC CS – Semester III	Course:	Theory of Computation
Program Code:	UGCS02	Course Code:	NUCS302

Duration:	1 Hour	Max. Marks:	30
-----------	--------	-------------	----

Instructions:

1. All questions are compulsory.
2. Figures to the right indicate full marks.
3. Draw neat diagrams wherever necessary.

Q. 1	Attempt any TWO of the following.	[10]	Course Outcome	Knowledge Level
(a)	What is a transition function in a finite automaton?		CO1	L1
(b)	Define a production rule in a grammar.		CO3	L1
(c)	Construct a DFA that accepts all binary strings divisible by 3.		CO2	L4
(d)	Define decidable and undecidable problems with two examples each.		CO4	L1
Q. 2	Attempt any TWO of the following.	[10]	Course Outcome	Knowledge Level
(a)	Explain how reductions are used to prove undecidability.		CO4	L1
(b)	What are the two methods of acceptance by a PDA?		CO3	L2
(c)	Define a Turing Machine formally.		CO1	L1
(d)	Design a PDA to accept the language $L = \{a^n b^n \mid n \geq 1\}$.		CO2	L2
Q. 3	Attempt any TWO of the following.	[10]	Course Outcome	Knowledge Level
(a)	Construct a derivation tree for the string aabbaabbaabb using the grammar: $S \rightarrow aSb \mid aS \mid aSb \mid e$		CO2	L6
(b)	Explain the Church-Turing Thesis and its implications.		CO4	L5
(c)	What is the difference between NFA and DFA?		CO1	L4
(d)	What is a formal grammar?		CO3	L1