SYCS/SEM IV/REG/Theory of Computation

Tir	me: 2½ hrs.	larks:75
No	and discourse and companies y with internal choice.	
	Draw neat diagrams wherever necessary.	
	Figures to the right indicate full marks.	
Q.1	0, , , , , ,	(20)
	(a) How does an automaton process input symbols?	
	(b) What is a transition function in a finite automaton?	
	(c) Explain the concept of e-transitions in NFA.	
	(d) What is the difference between a Mealy Machine and a Moore Machine?	
	(e) What is a formal grammar?	
	(f) What is the Chomsky hierarchy of languages?	
Q.2	Answer the following (any four)	(20)
	(a) What is a regular expression (RE)?	(20)
	(b) Convert the finite automaton below into a regular expression (example needed).	
	(c) Write a regular expression for the language containing all strings over (a, b) with an	
	even number of a's.	
	(d) What are the limitations of the Pumping Lemma?	
	(e) What are the two methods of acceptance by a PDA?	
	(f) Construct a finite automaton equivalent to the regular expression	
	(01+10)*(01+10)^*(01+10)*.	
Q.3	Answer the following (any four)	(20)
	(a) What is a Linear Bounded Automaton (LBA)?	(20)
	(b) Define a Turing Machine formally.	
	(c) Define the transition function of an LBA.	
	(d) State the Church-Turing thesis.	
	(e) What is the Halting Problem, and why is it undecidable?	
	(f) Explain how reductions are used to prove undecidability.	
Q.4	Answer the following (any five)	(15)
	(a) What is an automaton?	(13)
	(b) Define regular grammar.	
	(c) Define Nondeterministic Finite Automaton (NFA).	
	(d) What is a Pushdown Automaton (PDA)?	
	(e) What are the components of a Turing Machine?	
	(f) Define the states of LBA	
	Y	