Time: 21/2 hrs.

Marks:75

Note:

- 1. All questions are compulsory with internal choice.
- 2. Draw neat diagrams wherever necessary.
- 3. Figures to the right indicate full marks.

Q.1 Answer the following (any four)

(20)

- (a) Evaluate : $\sqrt{21-20i}$
- (b) Solve the following system of equations:

$$2x - y - z = 5$$
$$x + 2y - 2z = 3$$
$$-x - 2y + 3z = 0$$

- (c) Let $S = \{(1,2,-3), (1,-1,2), (2,3,4)\}$. Check the linear dependancy of the set S.
- (d) Express the vector (4,3,-2) as a linear combination of (1,1,0), (1,0,1) & (0,1,1)
- (e) Write a python program to rotate the complex number by angle t.
- (f) Let $V = \mathbb{R}^3$ be a vector space over a field \mathbb{R} . Let $S = \{(x, y, z) \in \mathbb{R}^3 | x + y + z = 0\}$. Show that S is vector subspace of V.

Q.2 Answer the following (any four)

(20)

- (a) Write a python program to input matrix and display inverse of that matrix.
- (b) Let $A = \begin{bmatrix} 6 & 2 \\ -1 & 2 \\ 0 & 3 \end{bmatrix}$, $B = \begin{bmatrix} 0 & 4 \\ 2 & -6 \\ 1 & 0 \end{bmatrix}$, $C = \begin{bmatrix} -2 & -1 \\ 5 & 2 \end{bmatrix}$ and $D = \begin{bmatrix} 2 & 2 & 3 & 1 \end{bmatrix}$

Compute the following if they exist

i)
$$A + B$$
 ii) $3C$ iii) $B + 2D$

- (c) For a linear transformation $f: U \rightarrow V$, Show that ker f is a subspace of U
- (d) State and prove Rank Nullity theorem.
- (e) Find rank of the following matrix by using row reduce echelon form:

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 5 & \cdot 7 & 9 \\ 2 & 5 & 8 & 11 & 14 \\ 2 & 4 & 6 & 8 & 10 \end{pmatrix}$$

(f) Show that T: $\mathbb{R}^3 \to \mathbb{R}^2$, defined by T(x, y, z) = (x + 3y - z, x + y - z), is a linear transformation.

Q.3 Answer the following (any four)

(20)

- (a) Write a python program to find projection of vector v on u.
- (b) State and prove Pythagoras theorem in vector space.
- (c) Find eigen values and eigen vectors of $\begin{pmatrix} 2 & 2 & 1 \\ 2 & 1 & 2 \\ 1 & 2 & 2 \end{pmatrix}$.
- (d) Construct orthonormal basis of \mathbb{R}^2 by Gram Schmidt process. $v_1 = (-1,2)$ and $v_2 = (3,4)$.
- (e) Let vector u = (1, -1, 1) & v = (4, 1, 2). Decompose vector v = x + y, such that x is parallel to u and y is orthogonal to u.
- (f) Find minimal polynomial for the following matrix:

$$A = \begin{pmatrix} -2 & -6 & -9 \\ 3 & 7 & 9 \\ -1 & -2 & -2 \end{pmatrix}$$

Q.4

Answer the following (any five)

- (a) Express the following as a + bi, where $a, b \in \mathbb{R}$ & $i = \sqrt{-1}$ $\frac{(2+3i)(3-4i)}{(1+2i)(1+4i)}$
- **(b)** Show that $F = (\mathbb{Z}_5, +, \cdot)$ is a field.
- (c) Consider the subspaces
 U = {(x, y, z, w): x + z = 0} and
 V = {(x, y, z, w): x = 0}.
 Find basis and dimension of

1) U 2) V 3) U∩V

- (d) Let U & V be a vector spaces over a field F. Show that if T: U \rightarrow V be a linear transformation, then Im(T) is a subspace of V
- (e) Verify Cayley Hamilton theorem for the following matrix:

$$A = \begin{pmatrix} 2 & 1 & 0 \\ -2 & -1 & 3 \\ 0 & 2 & 1 \end{pmatrix}$$

Hence find A-1.

(f) Show that :
$$\|\mathbf{u} + \mathbf{v}\|^2 + \|\mathbf{u} - \mathbf{v}\|^2 = 2(\|\mathbf{u}\|^2 + \|\mathbf{v}\|^2)$$